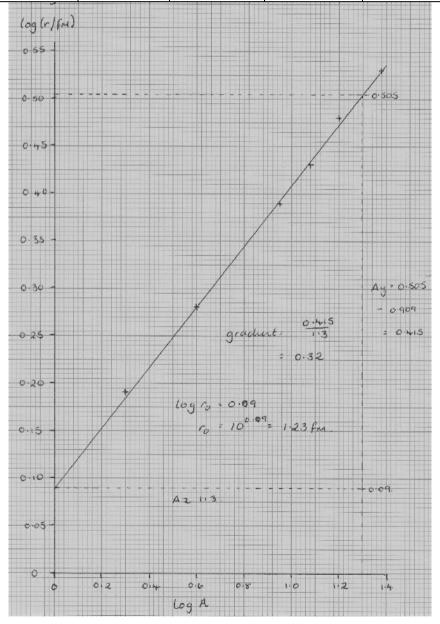


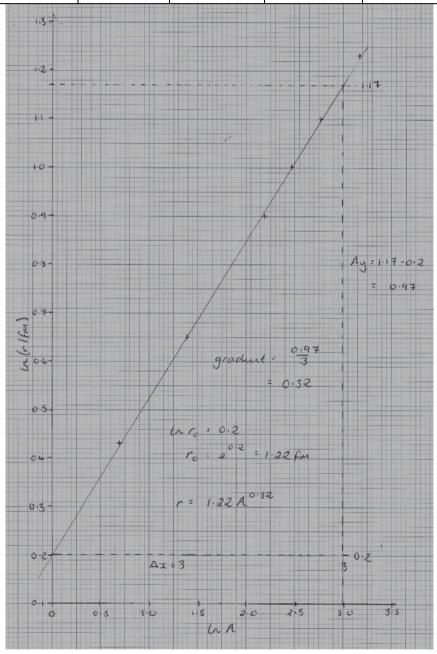
Mark Scheme (Results)

January 2021

Pearson Edexcel International Advanced Level In Physics (WPH16) Paper 1 Practical Skills in Physics II


Question number	Answer		Mark		
1(a)	Any THREE from:				
	Use a timing marker (at the centre of the oscillation)	(1)			
	Measure multiple oscillations and divide by the number of oscillations				
	Repeat and calculate a mean	(1)			
	Start timing after several oscillations have completed	(1)			
		(1)	(3)		
1(b)	Use a metre rule and set square (to ensure metre rule is horizontal) Or				
	use a metre rule and spirit level (to ensure metre rule is horizontal)	(1)			
	View metre rule perpendicularly (to avoid parallax error)	(1)	(2)		
	[Accept valid alternative to ensure metre rule is horizontal]				
1(c)	Use of $T = k\sqrt{D}$				
	$\mathbf{Or} \\ T^2 = kD$	(1)			
	Three relevant calculations shown [minimum 2 s.f.]	(1)			
	Comment consistent with comparing calculations [dependent MP2]	(1)	(3)		
	[Accept other valid routes]				
	Example of calculation				
	$k = 0.78/\sqrt{0.235} = 1.61$				
	$k = 0.94/\sqrt{0.335} = 1.62$				
	$k = 1.09/\sqrt{0.445} = 1.63$				
	As these values are consistent the prediction is correct.				
	Total mark for Question 1 =				

Question number	Answer		Mark
2(a)	Capacitors connected in series with a d.c. power supply	(1)	
	Circuit to discharge capacitors through resistor and ammeter	(1)	
	Method of switching between charging and discharging	(1)	(3)
	Example of circuit diagram		
2(b)	Ensure the working p.d. is not exceeded Or	(1)	(1)
	Ensure the capacitors are fully discharged after the experiment	(1)	(1)
	[Accept any other appropriate precaution]		
	[Accept reference to electrolytic capacitors]		
2(c)	Graphical Method		
	Any SIX from:		
	1. Choose the value of resistor to give a reasonable discharge time	(1)	
	2. Measure the resistance of the resistor (using a multimeter)	(1)	
	3. Charge the capacitors to the initial p.d.	(1)	
	4. Ensure that the ammeter and stopwatch are close together Or		
	use the laptimer on the stopwatch	(1)	
	5. Start the stopwatch at the same time as changing the switch Or		
	(Change the switch) and start the stopwatch at the initial current	(1)	
	6. Record the current (from the ammeter) at times determined using the stopwatch	(1)	
	7. Record measurements over at least one half-life Or time constant Or	(1)	
	Take many measurements		
	Alternative graphs	(1)	
	8. Plot a graph of $\ln I$ against t	(1)	
	9. Gradient = $-1/RC$ [dependent on MP8]	(1)	
	Or	(1)	


	Total mark f	or Questic	on $2=1$
	zy z-wamga sam sa aman m a anone emile		(-)
2(d)	Readings (of current and time) can be taken simultaneously Many readings can be taken in a short time	(1)	(2)
	9. $\tau = RC$ [dependent on MP8]	(1)	(6)
	8. Record the time taken for the initial current to reach 37%	(1)	
	Or		
	9. $t_{1/2} = RC \ln 2$ [dependent on MP8]	(1)	
	8. Record the time taken for the initial current to halve	(1)	
	7. Obtain minimum of 3 measurements and calculate a mean	(1)	
	6. Charge to the same initial p.d. each time	(1)	
	Or (Change the switch) and start the stopwatch at the initial current	(1)	
	5. Start the stopwatch at the same time as changing the switch		
	4. Ensure that the ammeter and stopwatch are close together Or use the laptimer on the stopwatch	(1)	
	3. Charge the capacitors to the initial p.d.	(1)	
	2. Measure the resistance of the resistor using a multimeter	(1)	
	1. Choose the value of resistor to give a reasonable discharge time	(1)	
	Any SIX from:	(4)	
	Non-graphical Method		
	j. t Re [aependent on Mi o]		
	9. $\tau = RC$ [dependent on MP8]	(1)	
	8. Determine the time for <i>I</i> to fall to 37% from a graph of <i>I</i> against <i>t</i>	(1)	
	9. $t_{1/2} = RC \ln 2$ [dependent on MP8] Or	(1)	
	8. Determine the time for I to halve from a graph of I against t 9. $t_{1/2} = RC \ln 2$ [dependent on MP8]	(1)	

Question number	Answer		Mark
3(a)	$\log r = \log r_0 + n \log A$	(1)	
	This in the form of $y = c + mx$ where the gradient is n	(1)	(2)
	[MP2 dependent on MP1]		
3(b)(i)	All log <i>r</i> values correct to 2 d.p. [accept 3 d.p.]	(1)	
	All log A values correct to 2 d.p. [accept 3 d.p.]	(1)	
	Axes labelled: y as $\log(r / \text{fm})$ and x as $\log A$	(1)	
	Most appropriate scales for both axes	(1)	
	Plots accurate	(1)	
	Best fit line with even spread of plots	(1)	(6)
3(b)(ii)	Correct calculation using large triangle shown	(1)	
	Value of <i>n</i> in range 0.30 to 0.34 to 2 or 3 s.f., no unit	(1)	(2)
	Example of calculation		
	n = (0.505 - 0.09)/(1.3 - 0) = 0.415/1.3 = 0.32		
3(b)(iii)	Value of y-intercept read from graph shown Or		
	Use of coordinates from point on best fit line with gradient to determine $\log r_0$ shown.	(1)	
	Value of r_0 consistent with their value of $\log r_0$	(1)	
	States relationship using their values given to 2 or 3 s.f.	(1)	(3)
	Example of calculation		
	$\log(r_0/\text{fm}) = 0.09$		
	$r_0 = 10^{0.09} = 1.23 \text{ (fm)}$		
	Hence $r = 1.23 A^{0.32}$ [Accept 1/3 for n]		
	Total mark f	or Questi	$ \begin{array}{c} \text{on } 3 = 13 \end{array} $

Isotope	A	r/fm	$\log A$	log (r / fm)
H-2	2	1.54	0.30	0.19
He-4	4	1.92	0.60	0.28
Be-9	9	2.47	0.95	0.39
C-12	12	2.72	1.08	0.43
O-16	16	3.00	1.20	0.48
Mg-24	24	3.42	1.38	0.53

Isotope	A	r/fm	ln A	ln (r / fm)
H-2	2	1.54	0.69	0.43
He-4	4	1.92	1.39	0.65
Be-9	9	2.47	2.20	0.90
C-12	12	2.72	2.48	1.00
O-16	16	3.00	2.77	1.10
Mg-24	24	3.42	3.18	1.23

Question	Answer		Mark
number 4(a)			
-()	The uncertainty is the same for both methods Or		
	The resolution of the metre rule is 1mm	(1)	
	Student B's measurement will be larger therefore the percentage uncertainty will be smaller	(1)	
	Or		
	Calculation of percentage uncertainty for both methods using same uncertainty shown	(1)	
	Conclusion based on comparison of correct values of percentage uncertainty	(1)	(2)
	Example of calculation		
	Student A %U = $\frac{0.1}{10} \times 100\% = 1\%$		
	Student B %U = $\frac{0.1}{10\pi}$ × 100% = 0.32%		
	Therefore Student B has a smaller percentage uncertainty.		
	[Accept 0.5% and 0.16% if uncertainty of 0.05cm used]		
4(b)(i)	Any TWO from:		
	Check for zero error to eliminate systematic error	(1)	
	Repeat at different places and calculate a mean to reduce the effect of random errors	(1)	
	Avoid squashing the string to reduce the effect of <u>random</u> errors	(1)	(2)
4(b)(ii)	mean $t = 2.10$ mm	(1)	
	Correct uncertainty from calculation of half range shown	(1)	(2)
	Example of calculation		
	mean $t = (2.15+2.06+2.13+2.08+2.10)$ mm/5 = 2.104 = 2.10 mm		
	Uncertainty = $(2.15-2.06) \text{ mm/2} = 0.045 = 0.05 \text{ mm}$		
4(c)(i)	Use of $C = x - \pi t$	(1)	
	Value of C correct to 3 s.f. [e.c.f (b)(ii)]	(1)	(2)
	Example of calculation		
	$C = 25.8 \text{cm} - (\pi \times 0.21 \text{ cm}) = 25.8 - 0.66 = 25.1 \text{ cm}$		

4(c)(ii)	Addition of uncertainties shown to minimum 2 s.f. [e.c.f. (b)(ii)]	(1)	(1)
	Example of calculation		
	0.2 cm + 0.005 cm = 0.205 cm		
4(d)	Value of V correct to 3 s.f. [e.c.f. (c)(i)]	(1)	
	Use of $2 \times \%$ U in C and $\%$ U in L shown [e.c.f. (c)(i), (c)(ii)]	(1)	
	Use of %U to calculate uncertainty in $\frac{C^2L}{4\pi}$ shown	(1)	
	Correct uncertainty from addition of final uncertainties	(1)	
	Example of calculation		
	$V = (25.1^2 \times 19.9) \text{ cm}^3/4\pi - 810 \text{ cm}^3 = 998 \text{ cm}^3 - 810 \text{ cm}^3$		
	$= 188 \text{ cm}^3$		
	%U in $\frac{c^2L}{4\pi}$ = $(2 \times 0.205 \text{ cm}^3/25.1 \text{ cm}^3) \times 100\% + (0.05 \text{ cm}/19.9 \text{ cm}) \times 100\%$		
	= 1.63% + 0.25% = 1.88%		
	U in $\frac{C^2L}{4\pi}$ = (998 cm ³ × 1.88%) = 18.6 = 19 cm ³		
	U in $V = (19 + 5)$ cm ³ = 24 cm ³		
	Or		
	Value of V correct to 3 s.f. [e.c.f. (c)(i)]	(1)	
	Use of uncertainties to calculate upper or lower limit of V shown [e.c.f. (c)(ii)]	(1)	
	Correct upper or lower limit calculated	(1)	
	Uncertainty correct from half range of V	(1)	(4)
	Example of calculation		
	$V = (25.1^2 \times 19.9) \text{ cm}^3 / 4\pi - 810 \text{ cm}^3 = 998 \text{ cm}^3 - 810 \text{ cm}^3$		
	$= 188 \text{ cm}^3$		
	Upper limit of $V = \frac{(25.1+0.2)^2 \times (19.90+0.05)}{4\pi} - (810-5)$		
	$= 1016 - 805 = 211 \text{ cm}^3$		
	$U = 211 - 188 = 23 \text{ cm}^3$		

4(e)	т	(1)	
	Calculation of $\rho = \frac{m}{V}$ shown [e.c.f. (d)]		
	Correct calculation of %U in ρ shown [e.c.f. (d)]	(1)	
	Calculation of relevant upper and/or lower limit shown	(1)	
	Valid conclusion based on comparison [dependent MP3]	(1)	
	Example of calculation		
	$\rho = 463 \text{ g}/188 \text{ cm}^3 = 2.46 \text{ (g cm}^{-3})$		
	%U = $(1/463 \times 100) + (24/188 \times 100) = 0.2 + 12.8 = 13\%$		
	Upper limit = $2.46 \times 1.13 = 2.78 \text{ (g cm}^{-3}\text{)}$		
	Lower limit = $2.46 \times (1-0.13) = 2.14 \text{ (g cm}^{-3})$		
	As both soda glass and borosilicate lie in the range the container may not be safe to heat.		
	Or		
	Calculation of $\rho = \frac{m}{V}$ shown [e.c.f. (d)]	(1)	
	Correct calculation of %U in ρ shown [e.c.f. (d)]	(1)	
	Correct calculation of %D shown for relevant materials	(1)	
	Valid conclusion based on comparison [dependent MP3]	(1)	
	Example of calculation		
	$\rho = 436 \text{ g}/188 \text{ cm}^3 = 2.46 \text{ (g cm}^{-3})$		
	%U = $(1/463 \times 100) + (24/188 \times 100) = 0.2 + 12.8 = 13\%$		
	Soda glass %D = $(2.52-2.46)/2.52 \times 100 = 2.38\%$		
	Borosilicate %D = $(2.46-2.23)/2.23 \times 100 = 10.3\%$		
	As both %D are less than the %U we cannot be sure the container is safe to heat.		
	Or		
	Use of uncertainties to calculate maximum or minimum ρ shown	(1)	
	Correct calculation of upper limit of ρ shown	(1)	
	Correct calculation of lower limit of ρ shown	(1)	
	Valid conclusion based on comparison of their values	(1)	(4)

Example of calculation

Upper limit of
$$\rho = \frac{463+1}{188-24} = \frac{464}{164} = 2.83 \text{ (g cm}^{-3)}$$

Upper limit of
$$\rho = \frac{463+1}{188-24} = \frac{464}{164} = 2.83 \text{ (g cm}^{-3)}$$

Lower limit of $\rho = \frac{463-1}{188+24} = \frac{462}{212} = 2.18 \text{ (g cm}^{-3)}$

As both soda glass and borosilicate lie in the range the container may not be safe to heat.

Total mark for Question 4 = 17